Evaluation of Single- and Dual-Wavelength Radar Rain Retrieval Algorithms by Using Measured DSD

Liang Liao¹, Robert Meneghini², and Ali Tokay³

¹Goddard Earth Sciences Technology & Research/MSU, Maryland

²NASA Goddard Space Flight Center, Maryland

³UMBC/JCET, Maryland

Objectives

- Development of a more realistic test-bed used for assessment of Ku- and Ka-band dual-λ technique in estimates of hydrometeor's parameters.
- Evaluation of DSD parameterizations: gamma distribution (fixed-μ & μ-Λ) adopted in the retrieval algorithms.
- Analysis of uncertainties and robustness of various algorithms with respect to spatial variations of DSD and PIA errors.
- Identification of appropriate DSD models that provide better estimates of rain rate, attenuation and DSD parameters.

Standard Dual-λ Technique

Differential Frequency Ratio:

DFR=
$$10Log_{10}(Z_{Ku}/Z_{Ka})=dBZ(Ku)-dBZ(Ka)$$

Under assumption of gamma DSD,

$$N(D) = N_w f(\mu) \left(\frac{D}{D_m}\right)^{\mu} \exp(-\Lambda D)$$

Thus, DFR= $f(D_m; \mu)$

Procedures become

$$DFR \rightarrow D_m$$

$$Z_{Ku}$$
 (or Z_{Ka}) & $D_m \rightarrow N_W$

Standard Dual-λ Technique

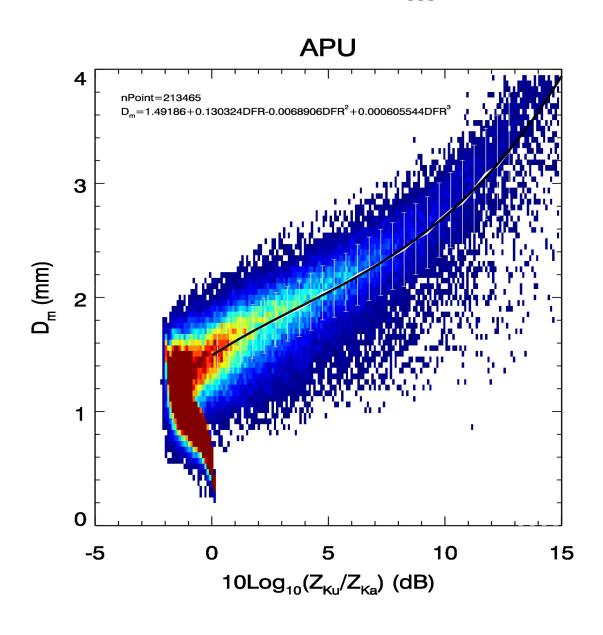
Advantages:

- Fully account for spatial and temporal DSD variations
- Independent of empirical (nominal) relations as used by some techniques

Issues:

- ➤ Double solutions of D_m when DFR<0</p>
- Small differences between Z(Ku) and Z(Ka) when DFR<0 or D_m roughly less than 1.5 mm
- DSD model dependent

Example of DFR-D_m Relation



Modified DFR

Defined by

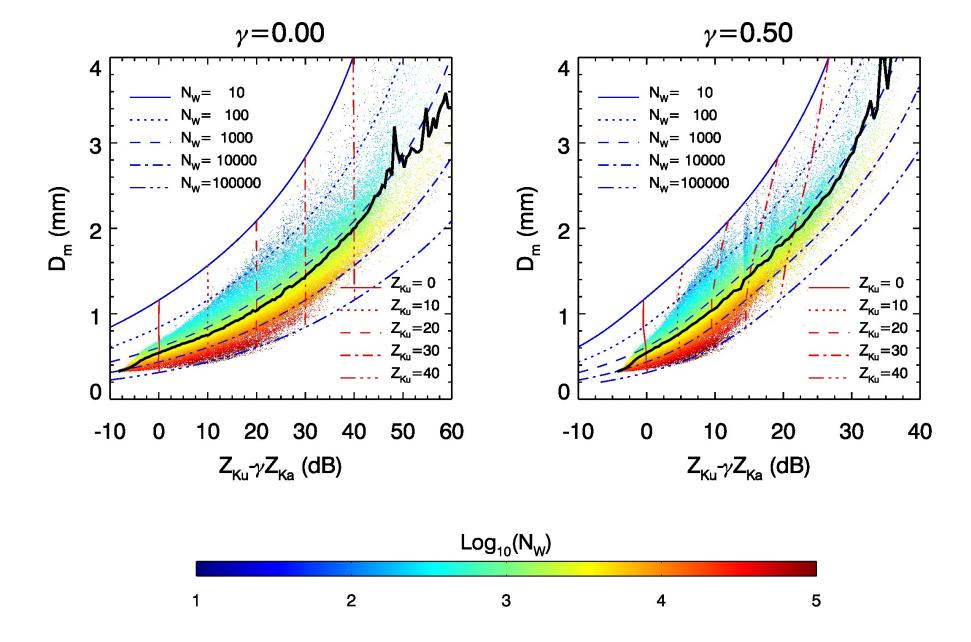
DFR*=
$$Z(Ku)-\gamma Z(Ka)$$
 (dB)

where γ is from 0 to 1, with special cases in which

 γ =0 (Ku only, single wavelength)

γ=1 (standard dual-wavelength method)

DFR* depends on not only D_m but also N_W (if $\gamma \neq 1$)



GPM DPR-Like APPROCHES:

From R-D_m relation expressed as
$$R = \varepsilon^{\tau} a D_m^b$$
 (1)

From Look-up tables
$$R = N_w I_R(D_m, \mu)$$
 (2)

Then, we have
$$N_w = \frac{R}{I_R(D_m, \mu)} = \frac{\varepsilon_k^{\tau} a D_m^b}{I_R(D_m, \mu)}$$
 (3)

And also,
$$Z_e = 10 \operatorname{Log}_{10}(N_w) + I_b(D_m, \mu)$$

Substituting (3) into above equation, we obtain

$$Z_e = 10 \log_{10}(\varepsilon_k^{\tau} a) + 10b \log_{10} D_m - 10 \log_{10} I_R(D_m, \mu) + I_b(D_m, \mu)$$
 (4)

 D_m could uniquely be solved from Eq.(4). Once D_m is determined, R and N_w are obtained from Eq.(1) and (3), respectively. From derived DSD parameters $Z(\lambda)$ and $k(\lambda)$ are then computed.

Reference:

Seto, S., T. Iguchi and T. Oki, 2013: The basic performance of a precipitation retrieval algorithm for the Global Precipitation Measurement mission's single/dual frequency radar measurements. *IEEE Trans. Geosci. Remote Sens.*, **51**, 5239–5251.

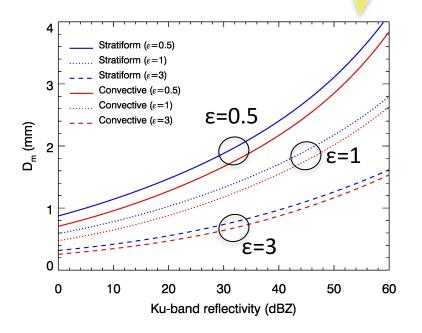
Seto, S., and T. Iguchi, 2015: Intercomparison of attenuation correction methods for the GPM dual-frequency precipitation radar. *J. Atmos. Oceanic Technol.*, **32**, 915-926.

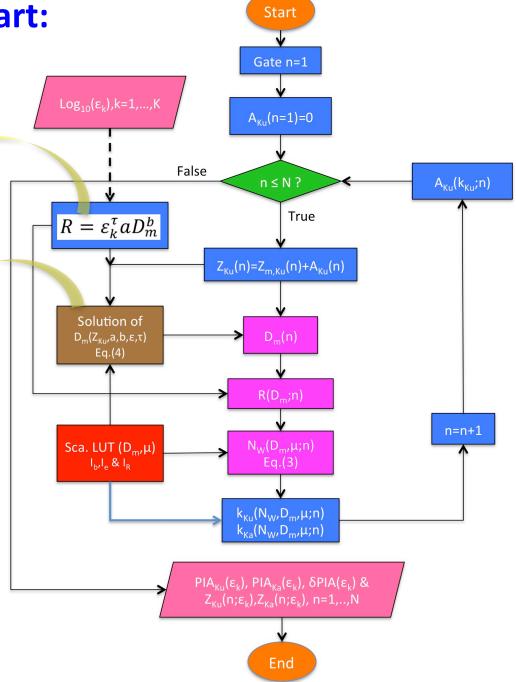
DPR-Like Retrieval Flowchart:

$R-D_{\rm m}$ relation (for GPM/DPR)

Stratiform: $R=0.401 \varepsilon^{4.649} D_{\rm m}^{6.131}$

Convective: $R=1.370 \varepsilon^{4.258} D_{\rm m}^{5.420}$





Finding ε by Optimal Way

Given ε_k , k=1,2,...,K (0.2 $\le \varepsilon_k \le 5$), forward computations are carried out. ε is chosed so that following conditions are met.

Dual wavelength

$$p_1(\varepsilon)p_2(\varepsilon)p_3(\varepsilon) = \max(p_1(\varepsilon_k)p_2(\varepsilon_k)p_3(\varepsilon_k))$$

$$p_1(\varepsilon) = \frac{1}{\sigma_1 \sqrt{2\pi}} \exp\left(-\frac{(\log \varepsilon)^2}{2\sigma_1^2}\right)$$

$$p_2(\varepsilon) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(\delta PIA - \delta PIA_{SRT})^2}{2\sigma_2^2}\right)$$

$$p_3(\varepsilon) = \prod_{l=1}^{N} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(Z_{m,l,est}^{(Ka)} - Z_{m,l,pbs}^{(Ka)})^2}{2\sigma_3^2}\right)$$

Single wavelength

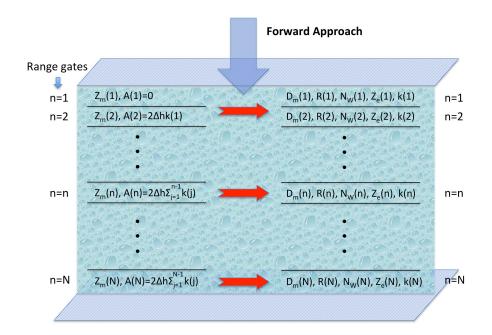
$$p_1(\varepsilon)p_2(\varepsilon) = \max(p_1(\varepsilon_k)p_2(\varepsilon_k))$$

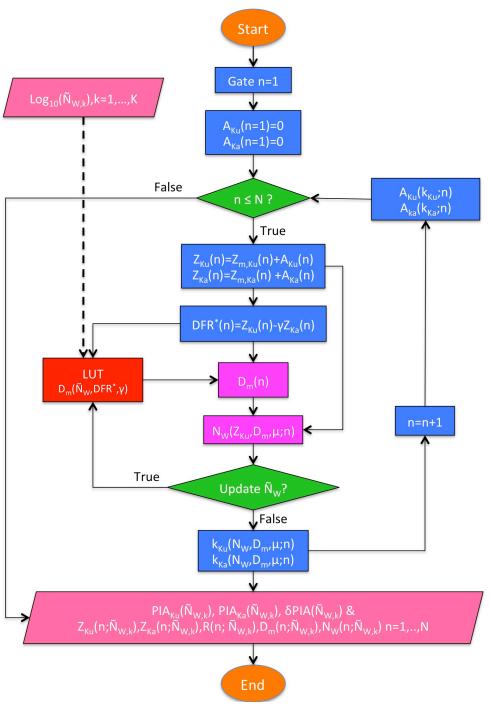
$$p_1(\varepsilon) = \frac{1}{\sigma_1 \sqrt{2\pi}} \exp\left(-\frac{(\log \varepsilon)^2}{2\sigma_1^2}\right)$$

$$p_2(\varepsilon) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(PIA - PIA_{SRT})^2}{2\sigma_2^2}\right)$$

Retrieval using Modified DFR*:

DFR*= $Z(Ku)-\gamma Z(Ka)$ (dB)





Finding N_w by Optimal Way

Given $\tilde{N}_{w,k}$, k=1,2,...,K (1 \leq Log₁₀($\tilde{N}_{w,k}$) \leq 6), forward computations are carried out. N_w is chosed so that following conditions are met.

Dual wavelength

$$p_1(N_w)p_2(N_w)p_3(N_w) = \max(p_1(N_{w,k})p_2(N_{w,k})p_3(N_{w,k}))$$

$$p_1(\tilde{N}_{w,k}) = \frac{1}{\sigma_1 \sqrt{2\pi}} \exp\left(-\frac{(\log \tilde{N}_{w,k} - 3.45)^2}{2\sigma_1^2}\right)$$

$$p_2(\tilde{N}_{w,k}) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(\delta PIA(\tilde{N}_{w,k}) - \delta PIA_{SRT})^2}{2\sigma_2^2}\right)$$

$$p_3(\tilde{N}_{w,k}) = \prod_{l=1}^{N} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(Z_{m,l,est}^{(Ka)}(\tilde{N}_{w,k}) - Z_{m,l,obs}^{(Ka)})^2}{2\sigma_3^2}\right)$$

Single wavelength

$$p_1(N_w)p_2(N_w) = \max \left(p_1(\widetilde{N}_{w,k})p_2(\widetilde{N}_{w,k})\right)$$

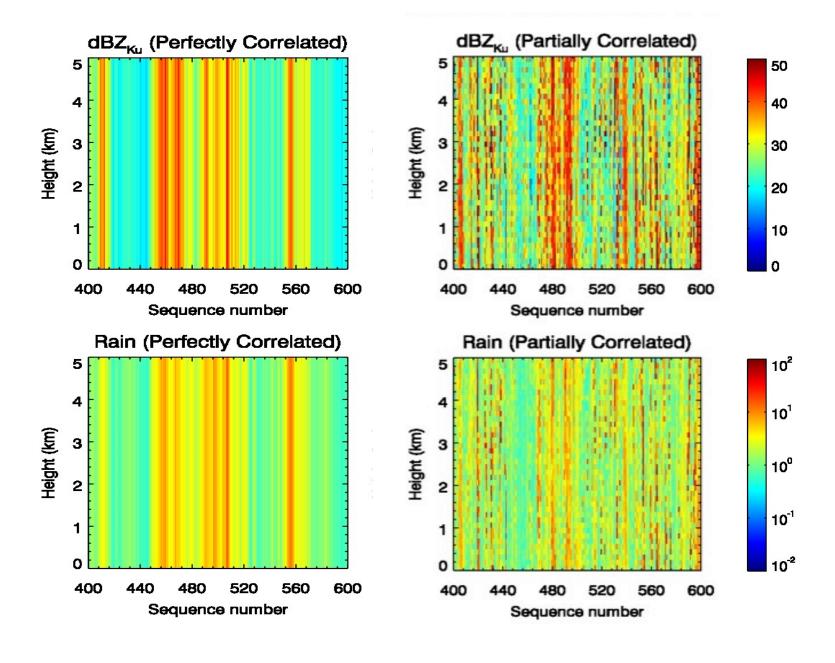
$$p_1(\widetilde{N}_{w,k}) = \frac{1}{\sigma_1 \sqrt{2\pi}} \exp\left(-\frac{(\log \widetilde{N}_{w,k} - 3.45)^2}{2\sigma_1^2}\right)$$

$$p_2(\tilde{N}_{w,k}) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(PIA(\tilde{N}_{w,k}) - PIA_{SRT})^2}{2\sigma_2^2}\right)$$

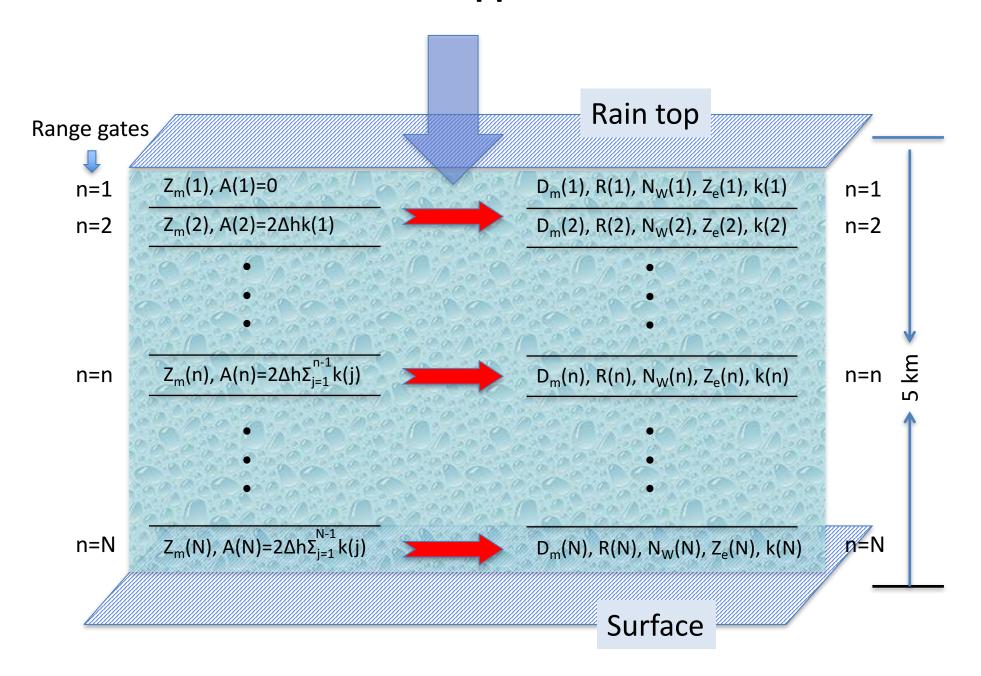
DSD Measurement Data

	Parsivel (APU)	2DVD
IFloodS	X	X
Wallops	X	X
MC3E	X	
OLYMPEX	X	X

Example of Simulated DSD Profiles

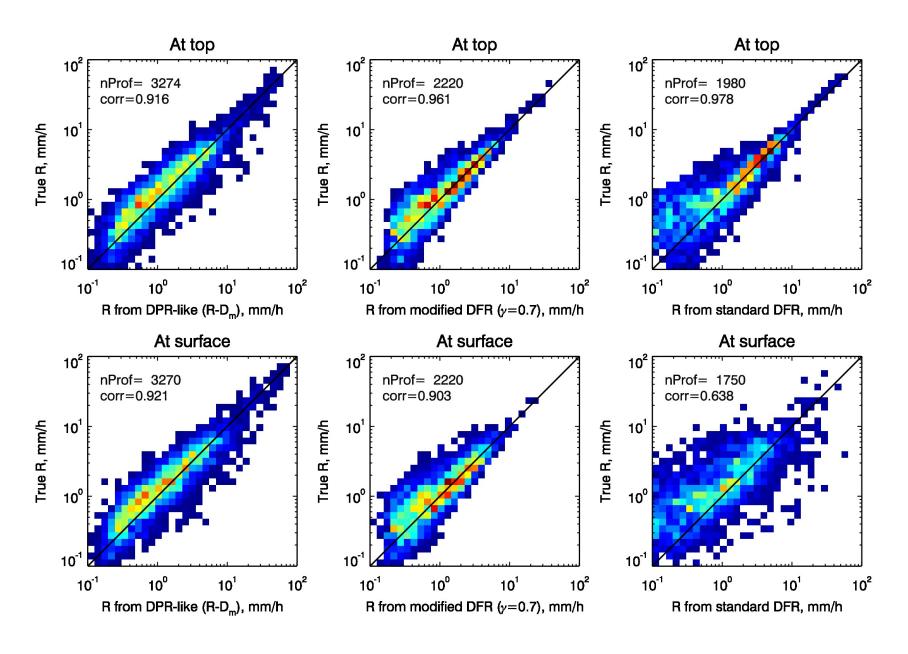


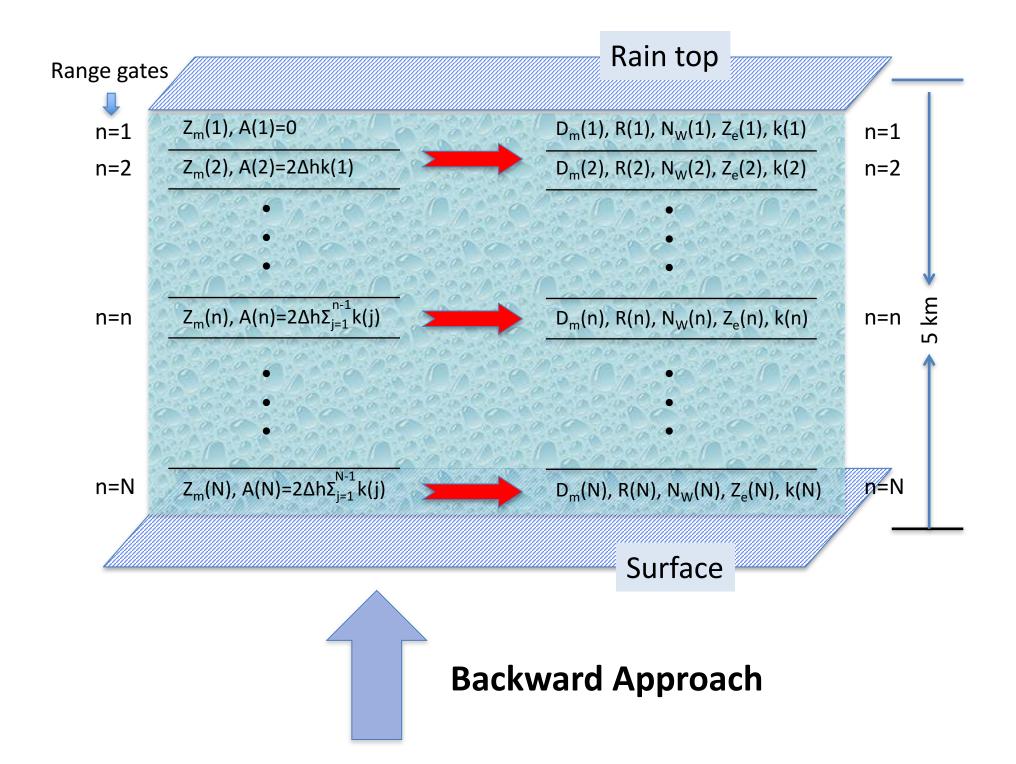
Forward Approach



Comparisons of Rain from DPR-Like, Modified DFR* and DFR

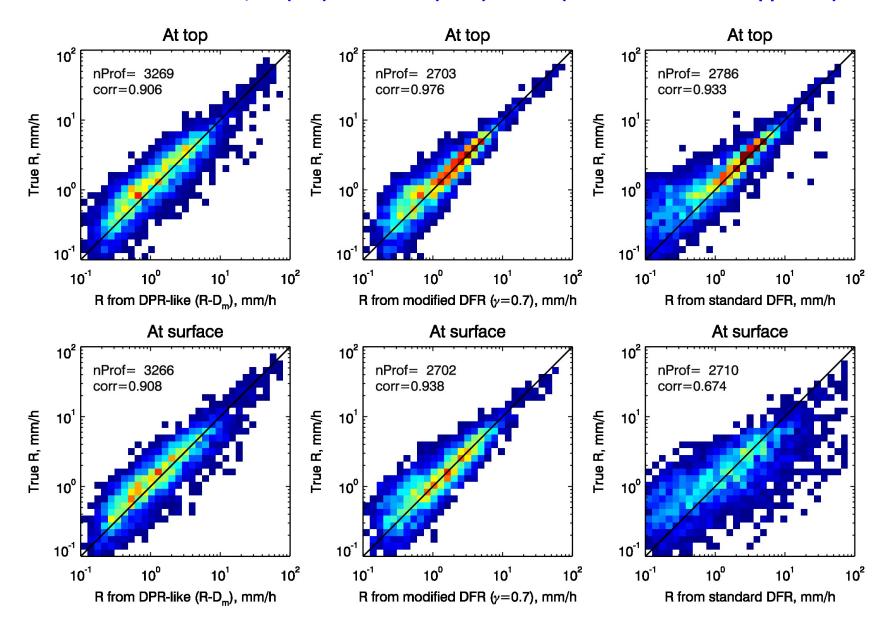
Non-Uniform DSD Profiles, Std(PIA)=2 dB & Std(δPIA)=0.8 dB (Forward Recursive Approach)





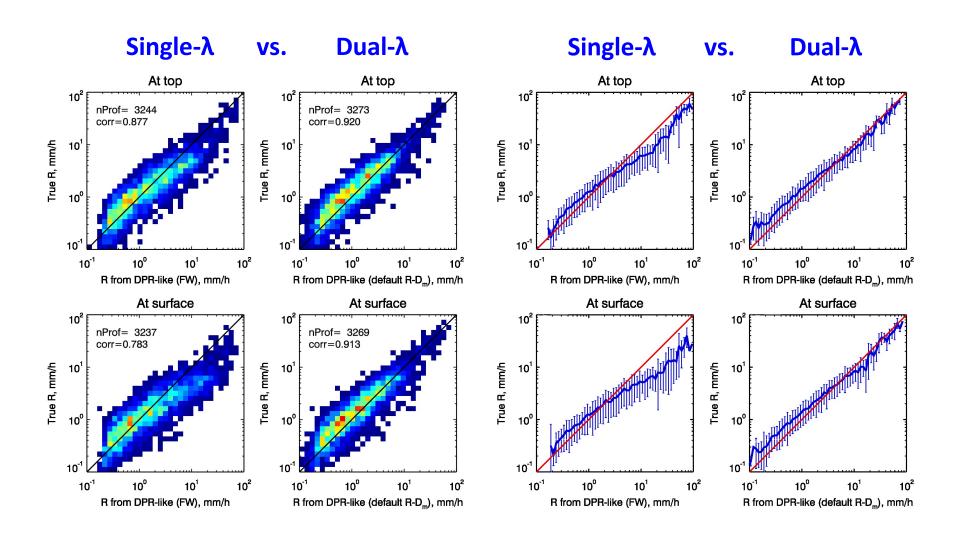
Comparisons of Rain from DPR-Like, Modified DFR* and DFR

Non-Uniform Profiles, Std(PIA)=2 dB & Std(δPIA)=0.8 dB (Backward recursive Approach)



Comparisons of Rain Estimates from Single- and Dual-Wavelength

Non-Uniform DSD Profiles, Std(PIA)=2 dB, DPR-Like Forward Approach



Summary

- A test-bed, comprised of measured DSD, has been used to evaluate several dualwavelength techniques with particular focus on current DPR-like rain retrieval algorithms.
- The vast majority of DSD data (based on several NASA sponsored field campaigns) are in the range where DFR is close to or less than zero; it leads to large uncertainties in estimates of DSD parameters and rain if the standard dual-wavelength technique (DFR) is used.
- An alternative method, i.e., modified DFR, is implemented in an attempt to avoid double solutions of D_m that the standard DFR method faces. A slight improvement has been noticed in terms of the level of uncertainties.
- Comparisons of DSD and rain retrievals under various simulated errors and assumed vertical DSD structures, show that DPR-like algorithms generally perform fairly well (in both robustness and accuracy) in estimating rain rate and parameters of the DSD.
- Dual-wavelength algorithms outperforms single-wavelength algorithms in achieving better accuracy and less uncertainties.
- A more complete assessment is under way, which include examination of various DSD models and the use of DSD measurements taken from different climatological regions.